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I. OBJECTIVE

The objectives of this program are to characterize passive
infrared (IR) targets and clutter through measurements and computer
analysis which would, when completed, evaluate a conceptual seeker
algorithm's mathematical equivalent for effectiveness against a given
threat within that threat's operational scenario. These objectives will
be achieved by conducting a systematic and exhaustive search for surface
vehicle target/clutter discriminants and the development of computer
software to evaluate these discriminants.

II. INTRODUCTION

The LIS Army Missile Research and Development Command (MIRADCOM)
Advanced Sensors Directorate is currently conducting a Ground Target
Signatures Program to investigate and evaluate passive IR targets and
background (clutter) signatures and identify potential target discrim-
ination and acquisition techniques. The thrust and direction of this
program imposes requirements that the search for discriminants be
conducted in as systematic and exhaustive a manner as possible and that
reliance on hit-or-miss postulation of likely discriminants be minimized.

Although a completely systematic and rigorously exhaustive approach
is not presently feasible, it is possible to initiate search techniques
which are systematic and exhaustive within a class of discriminants.
Thus, the IR target-clutter discrimination program is being developed
along two concurrent lines of inquiry:

a) A study of the physical processes involved in a seeker-clutter-
target complex with a view toward gaining understanding of the signal
parameters which might plausibly provide discrimination information.

b) A more innovative line, consisting of a characterization of
the stochastic properties of signals emitted from targets and backgrounds
of interest, in a systematic search for persistent differences in signal
distributions associated with various target backgrounds classes.

Because this program deals with land vehicles, the interaction of
the target with a variety of backgrounds must be utilized. The discrim-
inants must not be based solely on the bare-body signatures of the rarget
but on parameters of the seeker-clutter-target complex. These discrim-
inants have many possibilities such as spectral, spatial, amplitude, or
combinations of these properties of both the target and background.
Therefore, the major goal is to avoid a hit-or-miss approach to the
selection of discriminants. Considerable effort is being spent on the
development of systematic techniques to determine a set of signature
parameters that distinguish one class of objects from the other. These
parameters can then be utilized to define a seeker and its acquisition
and tracking algorithm to discriminate between targets and various
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backgrounds. Once the seeker algorithm has been determined for a partic-
ular set of discriminants, an estimate can be made of applicability to
a given threat and operational scenario.

III. PROGRAM RATIONALE

The program organization and priorities were determined by
answers to two questions which were: (I) What data (in terms of scene
information content) does a passive IR seeker need to operate when
receiving a real tactical scene? and (2) How does one go about collec-
ting data to duplicate a scene containing this information such that
target acquisition techniques can be investigated?

Question (1) was answered by an extensive literature search at the
Terminal Homing Data Bank, a review of present operational systems, and
a review of the state-of-the-art in passive IR seeker programs within
government and industry. These results indicate that most passive IR
operational and state-of-the-art seeker systems operate on some method
of spatial frequency filtering of the collected target/clutter and
power contained within the filtered frequency components. Some develop-
ment programs are extending these techniques to multispectral band
systems with spatial frequency filtering and statistical analysis of
clutter and targets.

Question (2) is answered by direct application of this program to
seeker systems. This forces a consideration of both present seekers
containing IR detectors with iechanical scanners and second generation
Charge Transfer Devices (CTD) IR detectors. Present day seekers with
mechanical scanners generate many different scan patterns including a
raster format. The second generation CTD IR detectors consist primarily
of matrix arrays or line arrays which are read out in a raster format.
Therefore, due to the extensive work required to carry out this program,
it was concluded that collection and analysis of data in a raster format
would best serve the long and short range needs.

IV. PROBLEM DEFINITION

After a brief review of the voluminous literature applicable
to target/clutter discrimination, it becomes obvious that a well-planned
and continuous Ground Targets Signatures Program is essential if reliable
seeker algorithms are to be developed at minimum cost. The present
program is aligned along traditional target/clutter functional lines with
separate and combinational evaluations of spectral, spatial, and temper-
ature characteristics of targets as a function of operating conditions
and environment; natural background, spatial and spectral distributions
and the effects of these distributions when man-made objects are added
to natural backgrounds; mathematical modeling of the sensor-target-clutter
complex; and target/background discrimination signal processing techniques
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applicable to seeker acquisition problems.

A significant degree of intuitive insight into the problem may be
gained by taking thermograph images of a wide variety of potential target
scenes, expressing these images in a digital format, reducing the corre-
sponding digital data, and exercising a computer model to predict seeker
acquisition performance. Consequently, this report will elaborate on
the thermal imagery data gathering system, reducing the data and utiliz-
ation of computer models to identify true target-false target problems
and predict seeker acquisition performance.

V COMPUTER FORMATOF AGA THERMOVISION

The ability to predict the performance of any passive infrared
seeker system accurately requires a model containing a realistic tactical
scene including both target and background clutter, plus a realistic model
of the data collection device and seeker system being considered. Further-
more, the timely assessment of the impact of seeker, target, and clutter
parameter variations necessitates the codification of this model into a
form amenable to quick response parametric analysis. To these ends, a
mathematical model (Appendix A) has been developed to describe the data
collection system and a generic class of seekers. Simultaneously with
this effort, fast running computer programs have been developed to inves-
tigate collected AGA Thermovision target/clutter data statistics.

A. Data Collection System

The data collection system is a raster type scanner as
described in Appendix A manufactured in Sweden by AGA AKTIEBOLAG. The
system contains two major subassemblies; the camera head and an elec-
tronics control/display console. The camera head consists of a silicon
lens with a 134-mm focal length and a maximum aperture opening of f/l.5.
The optical system uses a variable aperture stop to control the field-of-
view (FOV) and an image plane scanner designed to product a raster scan
at 16 frames/sec over a 10' by 100 square FOV. The scan rate is deter-
mined by the 280 vertical line 2/1 interlace raster with 140 unambiguous
data points per horizontal line and 140 unambiguous vertical line resolu-
tion capability. The single detector is an InSb photovoltaic detector
operating at 77°K by means of a nitrogen dewar. The detector angular
subtense for both horizontal and vertical FOV is 1.3 mrad. The scan
rate and electronics frequency of this system is given in Equation (22)
of Appendix A as:

f = fo = (XFOV) (YFOV) R os]
2 22 p se
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where

XFOV = horizontal FOV (mrad)

= 174 mrad

YFOV = vertical FOV (mrad)

= 174 mrad

FR = frame rate

= 16/sec

Nos = Overscan ratio

N = number of lines scanned in parallelP

Ax = horizontal instantaneous FOV

= 1.3 mrad

,%y = vertical instantaneous FOV

= 1.3 mrad

N = scan efficiency (ratio of active scan to total scan)se

The detected video signal is supplied to video amplifiers' circuits
(to be calibrated with the model of Appendix A later in the program when
frequency domain work begins) which amplify and filter the signal to
drive a small cathode ray tube which generates a pictorial result. At
the same time, the video signal is supplied to an analog-to-digital
converter. The analog-to-digital converter presently digitizes approx-
imately one frame per second and stores data serially on one track of a
14-track tape on an AMPEX-1300 tape recorder. Each digitized data frame
consists of 140 vertical lines with 140 data points per line in a 10-bit
word for each data point. This 14-track output tape, with one track of
serially packed digitized Thermovision output data contains 140 x 140 x 10
bits of information for each frame digitized. This information is then
selected on a per frame basis and recorded on a parallel seven-track tape
compatible with input data format requirements of an Army CDC-6600
digital computer. Further and more detailed descriptions of recording
techniques and the reduction of Thermovision data will be addressed in
the ensuing sections of this report.

The AGA Thermovision system is relatively small and may be mounted
on helicopters or installed in a fixture at ground level to view a ground
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target. In support of many different air defense and ground target
signature applications, the system has been equipped with eight different
bandpass filters. Each of these filters represents the IR bandpass of
US Army or foreign system to be investigated.

B. AGA Thermovision Field Measurements.

In general, the AGA Thermovision system has been used in
IR measurements of ground targets viewed from both fixed ground levels
positions and aerial platforms. This system of data collection has
proven to be reliable in many and varied applications. For example, this
system has been used by the Air Force to record in-flight IR signatures
of jet aircraft plumes. The Thermovision system was mounted in a pod
on the wing of a chase plane.

For this application, the Thermovision was mounted on a helicopter
to collect ground target and clutter data from various altitudes, ranges,
and aspect angles. Due to the interaction between the target and ground
clutter and a desire to gain more of an intuitive insight into the prob-
blem, a large quantity of data has been taken for ground targets and
clutter to look at statistics of both targets and clutter.

Data of this type, along with computer analysis, can evaluate and
establish limits on seeker systems acquisition techniques which operate
predominately on energy levels and spatial frequency. This type of data
and computer analysis can also be used to assess the feasibility of auto-
matic target cueing technology in detecting and recognizing tactical tar-
gets in forward looking infrared (FLIR) imaging systems.

C. Data Formatting

The purpose of this section is to outline steps required
to process and reduce the raw Thermovision data to a computer compatible
format. The block diagram of Figure I will be used to describe the
required process from the point of data inception to the point of
inputting reduced data to the CDC-6600 for analysis.

STEP1 STEP 2 STEP3

EACH DIGITIZED
THERMOVISION ANALOG TO DIGITAL FRAME IS SERIALLY
TAPES CONVERTER DIGITIZES RECORDED ON ONE
16 FRAMES/sec ONE FRAME/sec TRACK OF AN AMPEX

1300 TAPE.

Figure 1. AGA Thermovision data recording process.
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During Step 1, each Thermovision data frame is composed of 140
lines with 140 resolution elements per line; consequently, if each data
point is represented with a 10-bit word (16 x 140 x 140 x 10 bits of

information), a string of 3.136 x 106 bits would require recording on
magnetic tape each second. This data rate is well beyond the tape drive
operating capability; therefore, an analog-to-digital converter was
developed to digitize one frame per second, approximately 196,000 bits
of information per frame. This requires the matching of lines from frame
to frame to reconstruct one frame out of every 16 frames. To assure cor-
rect frame reconstruction, the last two data points at the end of each
frame have a special coded value. Therefore, at the end of Step 3, a
14-track AMPEX-1300 tape is generated with digital Thermovision informa-
tion on only one track. A physical representation of the one track is
shown in Figure 2. Each line is composed of Data Point I (Dl) through
Data Point 140 (D140); each data point is represented by 10 bits.

FRAME 1

LINE NO. 1 LINE 140
I .. D140, D1 ...

Figure 2. Data frame format.

For each line, Data Points 139 and 140 have the same special bit
pattern to denote the end of a line; in addition, Data Points 139 and
140 of Liae 140 are made up of a special bit pattern to identify the end
of a frame. After one frame is recorded on the tape, a new frame is
started; this process repeats itself until the measurements are completed
or a tape is full.

Steps 4, 5, and 6 (Figure 3) are illustrated to show how the data
are recorded to meet CD(-6600 input format requirements. During Step 4,
a decommutator is used to select the correct coded words at the end of
each line and at end of each frame to reconstruct each data frame
correctly. Each frame of data is input to a PDP-15 digital computer
(Step 5). During Step 6, a PDP-15 digital computer takes the serial
string of bits and generates a 7-track parallel digital packed tape
which may be input to a CDC-6600 computer. It must be recalled that a
10-bit word was output from the analog to digital converter to represent
each 10-bit data point. This 10-bit word is now right adjusted in each
of the 18-bit words output from the PDP-15 computer. Thus, at the end
of Step 6, a magnetic digital tape composed of Thermovision data has been
generated and is compatible with CDC-660 software.
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STEP 4 STEP 5 STEP 6

AMPEX-i1300
TAPE IS INPUT EACH FRAME A PARALLEL
TO A EMR-2746 IS INPUT TO 7-TRACK TAPE
DECOMMUTOR A PDP-15 IS PACKED WITH
TO CONSTRUCT COMPUTER 18-BIT WORDS
FRAMES

Figure 3. Data conversion to CDC-6600 format.

D. Validation of Data Format

The initial task in the Thermovision data analysis is to
input to the Eglin BASES program the digital tape generated during the

previously mentioned 6 steps of the data reduction process. The 10-bit
input data are now contained in an 18-bit word and must be selected,

sorted, and shifted into a 60-bit word. After processing through the

BASES program's GETPIC routine a new 7-track parallel data tape is

created, which is made up of 60-bit words, with five 12-bit words in
each 60-bit word. Furthermore, the 10 bits of meaningful data are

packed in each of the 12 bits of information as in the example of

Figure 4.

CDC 60-BIT WORD DATA FORMAT

_ _ _ _ 60 BIT

XX l-..---- XX - * XX--<.----- XX <- - XX
I 10 BIT 10 BIT B10 IT 10 BIT 0 BIT

Figure 4. CDC 60-bit word data format.

After using the GETPIC routine one time to generate the new 60-bit

word data tape, the BASES program may be run any number of times with

the new data tape without using the GETPIC routine again. Outputs from
the BASES program applied to measured data are tabulated in Table I

for 100 of the 260 frames of data contained on the tape.
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VI. DATA INTERROGATION BY COMPUTER MODELS

In the last few years, image data processing by digital
computers has become a topic of great interest, both from a practical
and a theoretical standpoint. Raster format data sources are common in
several applications of military technology and human analysis has
proven to be totally inadequate, especially when objective information
is to be extracted from large masses of data. On the other hand, the
application of digital computers to mechanize raster format data anal-
ysis is far from being a straightforward implementation; computers of
today, when they "see" a raster format image through an appended input
unit, can at best be compared to a blind human probing the environment
with a single finger. This relative clumsiness of the computer when
applied to a discrimination task imposes severe constraints on processing
algorithms, which must often trade elegance and generality for effective-
ness. There exists today, however, a number of methods or techniques
which are sufficiently general to make their dissemination across the
boundaries of application areas worthwhile. Consequently, the lack of
a complete theory of perception by computer has not prevented attempts
to solve more complex problems such as target-clutter discrimination.
This problem, as well as many other machine perceptual problems, involves
pattern classification - the assignment of a physical object or event to
one of several perspective categories. Extensive study of classification
problems has led to an abstract mathematical model that provides the
theoretical basis for classifier design. In any specific application,
one must ultimately come to grips with the special characteristics of
the problem at hand, such as target-clutter discrimination and target
acquisition. Henceforth, the purpose of this report and others to
follow on the Ground Target Signatures Program will be to give a system-
atic account of those principles of pattern classification and those
techniques of data analysis that seem to have the widest applicability
and interest to target acquisition.

A. Data Classification Model

Classification models used in present Ground Target
Signatures work to be described later contain many of the elements of
the most commonly used abstract models for target-clutter discrimination,
the classification model. This model contains three parts: a transducer,
a feature extractor, and a classifier (Figure 5). This classifier model
is an approach which uses a flexible combination of both heueristic and
statistical means to select and/or evaluate an optimal target-clutter
discrimiration system. Extensive reviews and detailed descriptions of
the classifier model and other pattern recognition systems are available
in the literature. The authors will here recap a general outline of the
model using examples and illustrations to allow the reader to become
familiar with the working concepts of pattern recognition as being applied
to target-clutter discrimination in this program.

12



-W1x w2
FEATURE X CLASSIFIER -w2

SCENE TRANSDUCER EXTRACTOR

..-WN

Figure 5. The classifier model.

The transducer essentially defines the observation set. That is,

the transducer senses or measures the external environment and converts

that information into a machine usable form. In mathematical terms, the

transducer generates a p-dimensional observation vector, y = (YI' Y2 9

Y' Y ) where the Y. can be any observation (amplitude, phase,

frequency, physical dimensions, etc.). For this program, the transducer

is the AGA Thermovision system as described earlier and generates two

variables: amplitude and spatial frequency in cycles/milliradian. A

third variable which is inherent in the spatial frequency content is

object size provided that the range to the object is known.

The feature extractor acts on the observation to extract potentially

ujeful information to be used by the classifier. This can be represented

mathematically by Equation (I) which maps the observation vector 7 into

the feature vector X through the transformation, T.

X =T(Y)()

There are three criteria for the optimum performance of a feature

extractor: maximum separability of classes in feature space, minimum

loss of discrimination information, and maximum reduction of data volume.

Each of these criteria will carry different priorities according to 
the

problem addressed and the available facilities. In general, when consid-

ering seeker systems, the highest priority will be given to maximum

reduction of data to minimize the number of calculations which in turn

reduces the electronics size and weight.

The classifier is used to partition the feature space into decision

regions and classify each feature vector X, corresponding to a set of

observations as belonging to a particular class of objects (Wi). This

can be thought of as another mapping, this time from the feature space,

X, to the class space, C, which is a discrete space with each point

representing a particular class.

The power of the classifier model is that given a set of observa-

tions, certain knowledge of the sample statistics (either calculated,

13
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measured, or assumed) and a feature extraction procedure, the model can
deEcribe the statistical discriminatory ability of a system. The model
can also be used to optimize the feature extraction process when the
features have not already been determined by the type of transducer.
The classifier can also be used to evaluate existing systems for perform-
ance under novel conditions. A generalized description of this total
classification model is contained in Appendix B.

B. Feature Extraction by Computer Models

To illustrate the classification technique, an example
problem will be used which shows some of the progress being made on this
program. The example used here is a tank in a low clutter background
with one other man-made object contained within the sensor FOV. A
three-diminsional power plot of this scene is shown in Figure 6 which
is an output from the BASES program. As defined previously, the sensor
is an AGA Thermovision which produces two features (irradiance level at
its optical aperture and spatial frequency in cycles/milliradian). These
features (or more precisely, the value of these features) are then passed
to the classifier that evaluates the evidence presented and makes a final
decision as to what is target and what is clutter.

Traditionally, two features (amplitude and spatial frequency) have
been used to design seeker systems. Some form of spatial frequency
filtering is implemented in the form of reticles, electronic filters,
etc.; the classifier then becomes a threshold detector whose level is
set proportional to the scene average value. Anything that passes the
spatial frequency filter and is above threshold is classified as a target.
To descTibe this in another way, it is assumed that the seeker acquisi-
tion system has a spatial frequency bandpass similar to the AGA Thermo-
vision. Then irradiance from the target and clutter become obvious
features, and an attempt might be made to classify the target and clutter
by determining if the target irradiance level measured as a voltage (V)
exceeds some critical value (V0). To choose V., many sample measurements,

of targets at various aspect angles, altitudes, and clutter conditions
may be made and a statistical analysis run on the results. This has
been done; a histogram of the example scene is shown in Figure 7. When
several of these histograms are accumulated, a plot similar to Figure 8
results. The accumulative histogram will or will not bear out the
feasibility of a single spectrum amplitude and spatial filtering concept
of seeker acquisition. The meaning of Figure 8 can be interpreted as
follows: for any signal voltage level above VI, the probability of

defining a true target as target is one. This is illustrated by
Figure 8 which shows the number of points and the magnitude of these
points. Obviously a voltage level setting can be set for this situation
but it is the total of these plots that will ultimately define the
probability of success for this type of seeker processing. From
Figure 8, it can be seen that if V is set as shown, some loss function

14



Figure 6. Three-dimensional power plot of example scene
(BASES program output).
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Figure 8. Statistical distributions of measurements.

will be incurred. The shaded area where target/background energy levels

overlap will result in a direct loss of those targets. If V 1 is set to

a lower value, then clutter will be classified as target. A sufficient
amount of data exists and is being reduced to determine the exact shape

of a real world curve similar to Figure 8. An alternate but similar

method of presenting these data is shown in Figures 9 through 13. Fig-

ure 9 is a Versitec plot of a COMTAL display which shows the scene and

runs histograms of Cursor-located fields shown as dark lines around the

located field. The histograms which are plotted on the display with the
scene are uncalibrated and used for operator interaction to investigate

the distribution and desired field within a scene. Figures 10, 11, 12,

and 13 are examples of Cursor located field histograms. Headers at the
beginning of each plot show the number of points contained within the

Cursor-located field and statistics of those points as well as the plot

scale factors. In addition to the plot scale factors, two columns of

numbers at the bottom show the energy level and the actual count at a
particular energy level. Figure 10 is a plot of most of the scene as

shown by the dark lines around the outside to indicate the Cursor-located

field. These data represent identical data used for Figure 6 with one

exception: the two least significant bits of the 10-bit words have been
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dropped. When using these eight bits in the 22,188 data points, only
269 points showed up as zeros which again validates the data collection
format. Figures Il, 12, and 13 represent histograms of a large area
around the target, the target, and the other man-made objects in the
scene, respectively.

C. Threshold Detection Using Histograms

Figure 14 is the output of a subroutine which uses the
histograms to set thresholds and then scans the 100 X 100 data block in
10 X 10 pixel arrays. This is an example of a single scene and indicates
that in this scene the true target would have been selected. However,
Figure 8 shows the statistical distribution of a large number of scenes

and will ultimately determine if the true target could have been selected.

Further discussions of these effects and target statistics will be dis-

cussed in a later report.

VII. SUMMARY

In summary, the discriminants investigated here are the spatial

radiance of target and clutter. These physical characteristics indicate

(Figure 8) the probability of success of acquiring a target by effectively

running a histogram and selecting a threshold based on the acquisition
scene energy distribution. The overlapping areas between target and

clutter represent a loss function where targets would be classified as

clutter or vice versa. In the search for other features, to minimize

this loss function, the most obvious step is to consider the frequency

distribution of the data collected.

Figure 15 shows a three-dimensional power plot of the example scene

used throughout this report. Figure 15 indicates that the target fre-
quency content is much higher than most of the clutter. Therefore, it
appears obvious that if the data set used to generate Figure 8 were
broken down into frequency components, a new set of curves could be

generated as a function of frequency and show the optimum frequency band

for that particular set of data. For this particular set of data, with

100 × 100 resolution elements, 50 discrete frequency components with
units of cycles/milliradian are contained within the scene. The distri-
bution of these frequency components is shown in Figure 16 which is the

autocorrelation function in the frequency domain. It is not obvious

from this set of plots where the target energy is contained within the

frequency spectrum. It becomes obvious from looking at Figures 15 and 16

that the target represents a small portion of the scene total energy.

Therefore, it also becomes obvious that the dc frequency component and

others of lower frequencies up to approximately one tenth of the scene

should be filtered out. This would allow a target extent from 2 to 10

pixels. This would have the effect of allowing the target energy to

represent a greater portion of the scene energy. From these results,
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the scenes would then be inversely transformed and a new set of data
calculated to represent Figure 8. The results from this operation
should provide more intuitive insight into the problem. This would allow
a more sophisticated approach to optimize the frequency bandpass for
various clutter conditions.

It is anticipated that, even after maximizing the use of these two
variables in complex clutter environments, the loss function will be

too large; additional independent samples of data will be required. In
anticipation of this, an additional Thermovision in the 8- to 14-4m band
has been added to the data collection system. This system will be bore-
sighted with the 3- to 5-pm Thermovision to within one pixel. At the
same time this system is added, multispectral data reduction algorithms
should be developed.
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Appendix A. DATA COLLECTION AND SEEKER SYSTEM MODEL

1. INTRODUCTION

In this section, derivations are given for noise equivalent
temperature (NET) for the data collection or seeker system spatial

frequency response. Complete and simplified expressions are given;

the complete expressions provide a basis for rigorous computer analysis
while the simplified expressions provide a means for obtaining reason-
able estimates through use of hand calculations.

Neither the concepts nor the final relationships are completely

new. The NET derivation is similar to an analysis in Jamieson [11 and
Lawson f21. The frequency dependence and NET expressions are valid for
any raster scanined system and may be used for other scan patterns with
modifications.

2. TERMINOLOGY

Terminology used in this appendix is consistent with IEEE
standard and accepted optical and IR notation. Furthermore, each nota-
tion is defined immediately after its use.

3. SEEKER DESCRIPTION

The desired signal information content from a data collection
system is the convolution of the spread function of the signal processor
with the input signal. When the processor is made up of several compo-

n.'nts, each spread function must be convolved; however, if the system
can be assumed to be linear, then the output signal in frequency space
is the multiplication of the transform of the input signal and the
transfer functions of the components. Therefore, to determine the type
of scene data needed and what data characteristics must be maintained,
transfer functions which define degradation ot scene information content

must be developed.

The breakdown of an IR system as shown in Figure A-1 is considered.
The objective optics focus signal energy from the scene which has been
degraded by the atmosphere. A mechanical scanner paints the scene onto

a detector or detector array or a detector matrix is electronically
scanned. The photon sensitive detector transduces the IR energy into
an electrical signal which is processed along with the system noise.

This processed signal and noise are finally supplied to a set of elec-
tronics which, in the case of a seeker system, implement a mathematical
tracking algorithm. The quality of these tracking algorithms depends
almost entirely on the quality of data in terms of information content
and signal-to-noise ratio (SNR). Therefore, if data are to be collected

accurately and simulated to these algorithms, the components of
Figure A-1 must be defined very accurately. These components can be
defined by considering some well-known information theory and IR system
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merit functions. These theories and merit functions should describe all
systems parameters in terms of amplitude and frequency response. In
this appendix, NET will be used to define amplitude response, modulation
transfer function (MTF) and complex spatial frequency functions used to
describe the frequency dependent components. The desired system descrip-
tion can be approached in many ways, but the most efficient and straight-
forward method appears to be a set of parameters which are divisible into
distinct independent entities. If these functions are linear and independ-
ent, the net result is achieved by a simple multiplication of the functions.

a. Linear System Considerations

If a data collection system or seeker head is considered
as a linear system for all inputs, the output signal will be equal to
the input signal convolved with the response function of that system,
i.e.,

vo(t) = pi(t) * h(t) =f Pi(t') h(t - t') dt' (A-I)

where v o(t), Pi(t), and h(t) represent the output signal, the input

signal, and the system response functions, respectively. The response
function h(t) can be defined as the system output function for an input
pulse approximating a Dirac delta function. If both sides of Equation
(A-1) are Fourier transformed, the expression

V O(f) = Pi (f)H(f) (A-2)

is obtained. Here V (f), Pi(f) and H(f) are the Fourier transforms of

v0(t), pi(t), and h(t), respectively. The quantity H(f) is referred to

as the system transfer function. The one-dimensional (spatial) version
of H(f) (i.e., the line spread function Fourier transform) for an
optical system corresponds to the system's optical transfer function (OTF)
whose absolute value equals the MTF of the system. In Equation (A-2),
the quantity H(f) is a filter response which filters the input signal
Pi(t). The function H(f) may be divided into many component parts to
represent the various system components such as optics, scanner detector,
electronics, etc. If these functions act on the signal in a serial
manner, the output signal is given by

v (t) = pi(t) * hl(t) * h2(t) *...* h n _ l (t) * h n(t) ; (A-3)
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correspondingly, the transform of i (t) is given by

V (f) = Pi(f) H1 (f) H2 (f) ... Hn-1 (f) Hn(f) . (A-4)

A wide sense stationary random process (e.g., noise in most
electrooptical systems) can be characterized by its autocorrelation
function,

R(t) = R(t, t + T) = n(t) n(t + T) , (A-5)

where n(t) designates the random process and T represents a time differ-
ence. The Fourier transform of this function, the power spectrum, is
given by

S(f) = f R(, )e - 2 J~j f() dT (A-6)

The parentheses in Equation (A-5) indicate an average over an ensemble
of n(t) functions. The output power spectrum of noise processed
(filtered by) a linear system is given by

S (f) = Si(f) H 2 (f) (A-7)

where S and Si are the output and input power spectra, respectively.

The true relationship between the power spectrum and the variance
(at a point) of the random process is

0 = S(f)df (A-8)

Because negative frequencies are not employed and because S(f) is
an even function of frequency, it is common practice to redefine the
power spectrum such that

2 = S(f)df . (A-9)

-0
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The power spectrum in Equation (A-9) is twice the one in Equation (A-8).
This spectrum is used for temporal voltage noise and the corresponding
(horizontal) spatial noise because it is the one most commonly employed
by IR systems engineers. In the vertical direction, however, the power
spectrum in Equation (8) is used.

A matched filter is a filter whose response function is a delayed
(time-shifted) time-reversed (spatially-reversed) version of the signal.
Thus, if v(t) is the signal function, the response function of the
matched filter is proportional to v(tI - t). The matched filter is the

filter which maximizes the SNR (signal being the magnitude of the output
from the matched filter and noise being the standard deviation of the
noise fluctuations) at a time t1 for the case that the noise is additive

(independent of the signal) and white (the power spectrum equals a
constant at all frequencies). For the case of a symmetrical signal and
for tI equal to zero, the matched filter has precisely the same shape

as the signal. If

-2'jf(t) dt (A-10)V(f) = f i(t)e d Ab

then the frequency response of the matched filter is proportional to
v*(f), i.e.,

f -2':j f(t)

H(f) = v(-t) e dt = V(f)

b. System Analysis

If an expression for NET is derived in general terms of
linear systems analysis, all components of Figure A-I will then be
well-defined. The desired transfer function is of the form

V (f)
0(f = T G(.T) Ho(f) Hf(f) HD(f) HE(f)I i(T, f)o 1 af D

where

v (f) = output voltage in terms of spatial frequency
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Ii(T,f) = input power in terms of temperature and frequency

G(.\T) = system amplitude response

ci = rms noise voltage

a = atmospheric transmission

H = optical MTF function0

H f = scanner matched filter

HD  = detector spatial and temporal response

HE = electronics frequency response.

NET is defined as that input temperature difference for a large
target (one whose size is large compared to the system resolution)
which is required to generate a signal (voltage amplitude) after the
detector preamplifier which is just equal to the rms noise voltage at
that point, assuming that the filtering action ot the electronics prior
to the measurement point corresponds to that of a "matched" filter.
Ambiguities in this NET definition provide at least part of the reason
NET is viewed with disfavor. However, NET can be a useful indication of
system sensitivity and provide a basis for establishing an allowable
simulation data noise floor. The only caution here is that when a
system is to be simulated, the NET definition and measurement techniques
and parameters for that system must be corrected to the "matched" filter
definition.

The detector, associated optics, and amplifiers are assumed to be
a linear system with a response r(%, t) * h (t) where r(%, t) is thec

detector response in volts/watt and h (t) is the system time responsec

function. If the power level incident on the detector equals ZF(%) i(t)
W/4m where i(t) is a normalized time function, the amplifier response is
given by

V(t) f ,(X) i(t) * r(%, t) * hc(t) d% (A-11)

0

= j -21jf(t) I(f) H C fP(Xr(%, f)dkd f (A-12)

04
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where 1(f), H (f), and r(\,f) are the Fourier transforms of i(t), h (t),
C C

and r(%,t), respectively. It is assumed that r(X,f) or r(%,t) are
separable into a frequency and wavelength component, i.e., that

r(%,f) = [r(%,f )I (A13)
o r(\,fo )

where r(%,fo) is not equal to a function of f, and r(,f)/r(\,f ) is not

a function of %. Equation (A-12) is now simplified to

vs = e-2  f(t)I(f) Hc(f) r(\,f) df "P(\) r(,fo) d
0

(A-14)

i' (t)f P r (,f ) d%

0

where i' (t) is defined in an obvious manner and is addressed in the next
session.

i) Amplitude Response

The rms noise voltage corresponding to V(t) must now
be determined. Let S(f) equal the detector noise spectrum. The noise
power spectrum beyond the preamplifier (i.e., system with transfer func-

tion H(f) equals S(f) H c2(f); therefore, the desired rms noise is given

by

2 =f S(f)Hl(f) df (A-15)

0

Combining Equations (A-5) and (A-6), the preamplifier SNR is given
by
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SNR = i'(t) P r(%,f ) d% (A-16)SN =Vt 1/2 (-6
-S(f) H 2 (f) dfI

0

Equation (A-16) yields the NET once the various variables are
recast into more useful forms. The SNR is set equal to I and i'(t)
is set equal to 1. The quantity i'(t) can be set equal to I because
the signal is determined at approximately the midpoint of an extended
target (i.e., low frequency) signal; if i(t) = I at its midpoint then
i'(t) will also because the signal is of much greater duration than the
response function of the detector-amplifier system assumed.

To recast the variables, it is first noted that the detector

detectivity, D% is given by

1/2* A d r\fo)
D (f = 1/2 (A- 17)[S(f ) I

where Ad equals the detector area. At this point, it is desirable to

show similarities with the standard terminology normally used. The more
familiar definition of D* is

(Ad
D = d SNR

where f is bandwidth and SNR is set equal to one. P then by definition
becomes NEP and the expression becomes:

. ( f ) I1 / 2

D*(Ad~N PD
NEP

These exp-ressions for D are related in the following manner:

'P(%)
DeetrSN %= 

P X

Dete tor % [S(f) df ] 1/2
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for a small bandwidth around t
0

SNRD=
[S(f 0) .'f 0]l/2

If NEP = P for SNRD equal to one, then

[S(f 0). f] 1 /
2

NEP= r(f )
0

therefore,

A1/2 f)
d r= d )

[S(f 0)1 1/2

Solving Equation (A-17) for (r) and inserting into Equation (A-16),
the SNR is given by

SNR = f-PD d%2 1/2 (A-18)

Ad - Sf) H df

where i'(t) has been set equal to 1. Next, it noted that for a simple
scanning system,

2.2 ~ T (A-19)
4F2 0

where

(\)0 = optical efficiency

F = optical F/number

T = temperature

L = W/cm/sterad/ im.
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Finally, using Equation (A-19) for .? and defining Tf by:

C s(f) 2

S(f )  H df , (A-20)

0

Equation (A-18) becomes

1/2 f :LX *qA T To D f (%) d%

SNR = 0 4 (A-21)42(if 1/2

The T in Equation (A-21) is the desired NET provided the SNR is
set equal to I and provided the bandwidth equals the approximate
reference bandwidth.

The bandwidth to which NET is commonly referenced is given by:

,: J [ XFOV (YOV) FR  o

["f = fo (YF2 n XR os] (A-22)
p se

where

XFOV = horizontal FOV (mrad)

YFOV = vertical FOV (mrad)

F = frame rate, for interlaced systems F = field rate

qos = overscan ratio

n = number of lines scanned in parallelp

X = horizontal instantaneous FOV (IFOV)

Y = vertical instantaneous FOV

rse = scan efficiency (ratio of active scan to total scan).

The initial form of f in Equation (A-22) is obtained from Equation
(A-20) first by setting the power spectrum ratio equal to 1 (i.e.,
ignoring all low frequency 1/f components and high frequency roll-off)
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2
and secondly by equating H toC

I

[I + (f/f 0 
2

corresponding to an exponential response function for the electronic
circuitry. The expression for f is derived by setting f equal to

1/2T d where r d is the delay time for a resolution element of size

X, Y (essentially the time the detector element spends on each reso-
lution element). The 1/2 d corresponds to

2Esin( fd) df

which is the bandwidth associated with a rectangular function of
duration Td.

Some additional expressions and definitions are useful in defining
a given seeker system. First D* is given by

-* D (A- 23)
% sina/2 1cs 

where

DN = D for no cold shield

cs = cold shield efficiency

= cold shield angle.

The quantity W is defined by

o o ( %) D fo(W A d (A- 24)

f (% ) D* (% )  'T

where X wavelength for peak Do().
p f

39

I



For most seekers, Equation (A-23) does not apply because cold shields
are not normally employed.

The NET, using Equation (A-24) is given by

NET 1 4F 2 ('.f) 1/2  (A-25)

A ox& Df(% )WAd  o (p Dfo (p)

where Equations (A-22), (A-23), and (A-24) provide useful expressions
for f, D* (), and W. Ad may be converted to optical element units byfod

the relationship

2
Ad = (focal length) (IFOV)

2) Spatial Frequency Response

The signal frequency dependence can be
determined by referring to Equation (A-I). Equation (A-12) was divided

into a frequency and wavelength dependent component in order to solve
for NE t and SNR as a function of input data wavelength and T. If
Equation (A-12) is recast into the form

VW /e - 2 1j f ( t ) l(T,f) H (f) G( T)df (A-26)

the frequency dependence can be treated. G( T) is represented by

Equation (A-21) and is not a function of frequency but represents the
seeker amplitude response. It must be remembered that the conditions
of Equation (A-21) were that the noise power spectrum is limited to

f and that D is not a function of frequency. This does not severely
0%

restrict its usefulness because the modifications are very simple.

If Equation (A-26) is transformed to

v(f) = G(>T) I(T,f) H (f) (A-27)
oc

where
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I(T,f) = input as a function of temperature and frequency

H (f) = seeker head filter functionc

G(AT) = seeker response as a function of temperature.

The only remaining chores are to determine the form of H (f) for the
various components where c

H (f) = H0 (f) Hf(f) HD(f) HE(f) (A-28)

where

H (f) = optical MTF functions

Hf(f) = scanner and matched filter MTF

HD(f) = detector MTF

H E(f) = lectronics MTF.

a) Optical MTF Functions

There are many options in the calculation of
optical MTF functions, but in general, the MTF function is the product
of a diffraction limited component and a Gaussian abberration (or blur)
component. The diffraction limit MTF as a function ot spatial fre-

quency fx (cycles/mrad) for optics with F number (F #), and at wave-

length % is given by

Hdf 2 1fcosl(clf1) - c f I - (c f) 2 ] 1/2 (A-29)Nod~f ,x Ios (f)- 1 x )

where c, = kF

If cylindrical symmetry is assumed, Equation (A-29) is valid for the
vertical transfer characteristic also. The Gaussian geometric blur
can be considered as

-c f 2

H og(f) = e x (A-30)

where C2 is evaluated (or mersured) at a specific data point and is
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given in terms of (K) at K1 cycles/mrad where K will always be less

than one because the data point is on the exponential part of the
frequency curve. The total MTF function can then be calculated as

Ho(f) = 2 {cos-l(clfx) - clf [- (Clf e )] 2x 2 (A-31)

b) Matched Filter

The scanner filter transfer function is iden-

tical to the NE T "standard" noise filter bandwidth. This function

also represents the signal maximum bandwidth assuming that all other

MTF functions are one over the frequencies of interest:

f = f /2
0

F(HFOV)(VFOV) FR 9os1 (A-32)

2 [2n px y scJ

In this case, the frequency is an electrical frequency and must be

converted back to spatial coordinates by the following linear trans-

formation:

f(H z )

= V (mrad/sec) (A-33)

where V is the detector scan velocity in milliradians per second. Thes

scanner matched filter transfer function then becomes

Hf(f) = I . (A-34)

I + jf x/fxo

Combining Equations (A-32), (A-33), and (A-34), the frequency dependent

components due to the scanner and matched filter are obtained:

Hf(f)= /(HFOV)(VFO V ) FRos] (A-35)

1 + j fxVs L 2pxYs---

x S 2 p~x se
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c) Detector Spatial and Temporal Response

The detector response is normally divided into

a spatial component and a temporal component. However, for most seeker

systems the temporal response is negligible. The temporal response will
be covered only for completeness.

Spatial filtering in the horizontal or vertical direction is given
by

R sin( fxiX) (-6

HD(f) "

where x is twice the detector scan direction, IFOV.

The detector temporal response is significant only when the detec-

tor dwell time is very short. When this occurs, charge carriers in the

detector material do not respond fully to scene changes at higher

spatial frequencies. This phenomenon can be represented by a simple

first order lag of the form

1i/f (A-37)HUT(f) = I + j 1f /f* (-7
X x

where f* is the conventional detector 3-dB break frequency (Hz) converted
to spatial frequency in cycles/milliradian by the relationship of

Equation (A-33).

d) Electronics

Electronics beyond the already assumed matched

filter associated with the scanner system can only filter the signal

temporal characteristics. Filtering beyond the matched filter can be
modeled by cascading either first order leads or lags. The first order

leads are modeled as

HE(f) = 1 + jfx/fox (A-38)

where fox and fx are converted to spatial frequency by the constant scan

velocity. Lag networks are identical to Equation (A-37) after conversion

to spatial frequencies. If the input signal mean value (or dc term) is

important, all seeker lead terms must be modelled as in Equation (A-38).
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3) Seeker Transfer Function

Combining the previous results, the desired seeker
transfer function is obtained:

V (f)
0 = a G( T) Ho(f) Hf(f(f) Hf) HE(f) (A-38)Ii (Tj f) a 0 f Df Ef

where 2a is the atmospheric transmission, H (f) is the optical transfer

function given by Equation (A-31), Hf(f) is the scanner and matched

filter transfer function given by Equation (A-35), HD is the detector

transfer function given by Equations (A-36) and (A-37), H E(f) is the

electrical transfer function as described in Equations (A-37) and
(A-38), and G( T) is the amplitude response given by Equation (A-21).
These results are shown in Figure A-2.

4. DATA FORMAT

Equation (A-39) defines either the seeker or data collection
system; to determine the required data format, each component must be
investigated. If a simple filter function is considered, the frequency
dependence can be readily explained and the effects of each term of
Equation (A-39) become obvious. The simple function

Po(f)K

- (A-40)
Pi(f) 1 + jf xV/f 

(

is considered where P (f) and P.(f) are the output and input power, f

is the filter break frequency and v is the scan velocity in
milliradians/second. The only point which must be remembered is that
each filter function will have an effect directly proportional to its
break frequency. Only the magnitude term is of concern here. The filter
functions may be represented as complex functions to maintain phase,
but it is not necessary to explain the frequency versus magnitude signal
characteristics. The magnitude as a function of spatial frequency is
as shown in Figure 15 with the frequency break point at V/f 0 This

0

break frequency is in terms of cycles/milliradian and is independent of
range.

If Figure A-3 is now converted to a function of range (R), the
frequency variable is converted from cycles/milliradian to cycles/meter
ground resolution where R is defined in meters. Equation (A-40) then
becomes
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P0( M K (A-41)

Pi(f) I + jfx v/Rfo

Again, this is a linear transformation and does not violate the
assumptions of linear systems or mathematical principles. All frequency
dependent terms of the seeker transfer functions may be converted by the
factor

f(cycles/m) = f(cycles/mrad) 1/R (m) (A-42)

If Equation (A-41) is now represented by a magnitude versus frequency
plot (Figure A-4), a family of curves is obtained (one for every value
of R). In this representation, the required data format ground resolu-
tion can be determined as a function of range. As range decreases by
a factor of two, the seeker resolution (cycles/meter) also increases by
a factor of two. This will ultimately limit the minimum range simulated
from a given data set. For example, if the desired range closure simula-
tion is from 4096 m down to 128 m the seeker resolution in meters
increases by a factor of 32. (Figure A-5).

Equation (41) shows the highest resolution to be at minimum range
and decreases inversely proportional to range. This implies that, if
real world data are collected and used while maintaining the true
information content, the following scale factor between the seeker and
data collection system must be maintained as well as matching the
FOV (Figure A-6).

f V fdVd
xs s xd d 

(A-43)Rf R
Rs os Rdfod

Here s and d represent the seeker and data collection device, respec-
tively. If the conditions of Equation (A-43) cannot be met, then the
seeker and data collection system must be matched at some value of
range (r). The data set is then degraded in a controlled fashion to
match the seeker system response. In the case where the conditions of
Equation (A-43) cannot be met, the data would not be degraded using the
seeker transfer functions, but would use an artificial set of functions.
The result would be identical to a high resolution data set degraded by
the seeker transfer functions.

Appendix A shows a simple method of data degradation utilized by
Night Vision Labs (NVL) in the TLGP simulation. This approach is valid
only when the seeker system under consideration has infinitely small
resolution capability. For example, all of the components of Equation
(A-39) for the data collection system are assumed to have spatial
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frequency responses well above the seeker. Now if the data are degraded
simply by matching the IFOV, all high frequency data components are
maintained. These high frequency components are supplied directly to
the seeker processor and do not represent a valid simulation. For
example, a simple case is considered where it is desired to simulate
range closure by a factor of three with a data set taken at the shortest
range. The IFOV is matched by the following method:

R stan IFOV s = Rd tan IFOV d  (A-44)

For this condition, the data at the longer range R contain more high
frequency data than the seeker would normally see. This is easily shown
by considering the one-dimensional case where the scene data contain
a square wave with a period equal to two resolution elements (Figure A-7).
These data can be represented by the sums of Fourier series components
representing the square wave as:

AS (sin f + 1/3 sin 3f + 1/5 sin 5f + ... ) . (A-45)

It can be seen that if the data are degraded by simply taking the data
mean value of two resolution elements, all high frequency components are
maintained. However, when the true optical MTF function is used as a
spatial frequency filter as

H o(fx) = ]1/2 (A-46)
ox + (fx/fo)2

frequencies near cr above the optical cutoff, f , will be attenuated
identically to those of the seeker. 0

The first case, where data are degraded simply by taking the mean
value of several resolution elements, enhances all edge information.
However, the true filter in Equation (A-46) attenuates the higher
frequency components. In fact, the high frequency third harmonic energy
never reaches the focal plane. This can also be shown by data reduction
techniques. Figures A-8 through A-12 show a 900 x 900 resolution
element scene, a power plot of the scene filtered to 128 by 128 resolu-
tion elements, the Fourier Transform magnitude plot (autocorrelation
function), and the inverse transform power plots after the scene has
been filtered by a single simple optical MTF function to represent a

25% and 50% range difference in observing the data. Figure A-13 shows
a 64 x 64 resolution element power plot which has been reduced by
0.50% in range using the y mean value method.
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SEEKER SCENE DATA
IFOV
AT R

S = SUM OF FIRST 3 HARMONICS

HIGH RESOLUTION
COLLECTED DATA

INCLUDING THIRD HARMONIC

S = SUM OF FIRST 3 HARMONICS

DATA DEGRADED BY
FACTOR OF 3 BY MEAN
VALUE

S,

DATA DEGRADED
BY FACTOR OF 3
BY FILTERING

Figure A-7. One-dimensional data format.
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Figure A-8. Scene 1 900 x 900 resolution element

power plot (8 to 14 pm).
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Figure A-9. Scene 1 128 x 128 resolution element power plot.
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Figure A-1O. Scene 1 Fourier transform of 128 x 128
resolution element data.
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IJI

Figure A-11. Scene I. frequency filtered to 96 x 96 resolution
elements, single order lag.
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Figure A-12. Scene 1 frequency filtered to 64 x 64 resolution
elements, single order lag.
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The 64 x 64 resolution element power plot in Figure A-12 was
obtained by applying a circular filter in the Fourier transformed scene
frequency domain. The circular filter simply implies that the data
resolution was reduced equally in all directions in the frequency
domain. In object space, this has the effect of degrading vertical,
horizontal, and diagonal edges equally. This filter function is
equivalent to an optical MTF for a circular aperture system. In
Figure A-9, a window function has been applied to the scene to eliminate
high frequencies created by the artificial step function at the physical
data limits. All comparisions should be made on internal scene detail
without consideration of the scene data edges. After comparing Figures
A-12 and A-13, it becomes obvious that the filter function is preferred
over the mean value method. However, the mean value is a close approxi-
mation except for the case where an algorithm has differentiation.

Previous resLIlts show effects of an optical system Gaussian aberra-
tion MTF functions. All other filter functions will have a similar
effect and should be treated similarly. The one exception is a raster
format line scanning detector spatial function. As seen earlier, the
detector spatial frequency function is represented by

sin :f .',x
x (A-47)HD(f) = f ."X

x

where .x = 2 IFOV.

Observing the minima and maxima of this function, zeroes occur at
frequencies where f is the reciprocal or the even multiple of thex

reciprocal of x. Maxima occur where f is half multiples of the
x

reciprocal of x. The primary question then is what information content
the signal contains. A good discussion of this subject may be reviewed
from References 1 and 2. These references show that 91% of the total
energy is contained within the spectrum between zero and the first null
of D(f) corresponding to a frequency equal to the reciprocal of x.

The y direction filtering function is identical to the x direction for
a square detector. These facts imply that the maximum frequency content
of the rectangular function is a frequency whose period is the recipro-
cal of two resolution elements. This remains true for all cases except
where high energy point sources of less than one resolution element
spatial extent are present in the scene.

The last filter function to be considered is the sampling process
created by sampling the collected data. If this process is considered
as independent of other filter functions, then the scanning optical
system unambiguously samples object space at sample intervals equal to
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the IFOV. The sampled data theorem is normally referred to a time domain
but presents no problems to a spatial frequency reference in cycles/meter.

If data are considered as periodic, the lower bound sampling rate is

N ? 2K + 1 (A-48)

where N is the number of samples per fundamental period and K is the
highest harmonic in the Fourier series for f(x). If N is the number of
samples per fundamental period and if a period consists of x m, then the
sampling rate must be N/x samples/m and the highest frequency component
in the Fourier series representation of f(x) must be K/x cycles/m.
K, x, and N must now be related to the seeker or data collection system
to the total FOV, IFOV, and Range. If N is the number of resolution
elements per scan line:

N = FOV (A-49)

IFOV

Substituting this value of N into Equation (A-48), K is obtained as

K FOV (A-50)
21FOV

The spatial frequency resolution is then given by

K= 1 cycles (A-51)
x 2R(IFOV) m

where x is the ground coverage in meters and given by (R)(FOV). The
highest scene harmonic is given by Equation (A-50) while the highest
spatial frequency resolution is given by Equation (A-51). Unlike the
other filter functions which have complex frequency responses and roll
off the higher order frequency components in an exponential fashion,
the sampling process creates an infinite attenuation to all frequencies
above cutoff.

5. SUMMARY AND CONCLUSIONS

Seeker system simulations with real tactical data are at best

a difficult and tedious task. Figure A-2 represents a set of transfer
functions which are valid for the data collection system and the seekr
system to be simulated. These transfer functions must be evaluated for
both systems. Initially, the data collection system must be evaluated to
determine the collected data quality. Figure A-14 shows the asymptotes

of magnitude versus frequency for each transfer function and the
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accumulative response. Obviously, valid data exist only out to a
resolution frequency f, and represent the minimum seeker resolution which

can be simulated by these data. Data frequency response corrections may
be made by multiplication of the data by an inverse function of the
accumulative response. These correction limits are established by the
NE T noise floor and where it intercepts the signal response function.
Correction beyond a frequency where f = f on the accumulative responsex C

function will degrade SNR of the original data collected. This new value
of noise also establishes a new noise floor and changes the data SNR.
It must also be remembered that, in general, the noise will be affected
only by the detector temporal response and electronics. After this
complete definition of data quality and correction procedures, the data
can be digitized at twice the corrected frequency f . Alternately, the

c

data could be collected, digitized at twice f , Fourier transformed, and
c

then the appropriate frequency components corrected. This data set could
be used with full confidence and without rationalization.

Independent of how the seeker simulation is implemented, the
transfer functions of Figure A-2 must be evaluated for that system.
After the initial evaluation, it may become obvious that some functions
are negligible; however, to match the seeker resolution to a data set,
the evaluation must be made. Matching the seeker resolution to a data
set at a range, R, determines the minimum range which may be simulated
with that data.

The FOV matching problems make it impractical to take data at the
minimum range. For example, if the data collection system and seeker

have identical spatial frequency responses, the data system FOV must be
a factor of 32 larger to simulate range closure from 4096 to 128 m.
To solve this problem, data must be taken at several points along the
line-of-sight to the target. Alternately data could be taken by a zoom
optical system.

The primary considerations here have been to consider an all-digital
simulation for seeker systems which collect data in a raster format but
the techniques are not necessarily limited to these systems. Any system
whose optical system and scanner can be defined in a closed mathematical
form may be simulated by these techniques. If a scanner is nonlinear
and can be quantized into a reasonable number of linear increments, the
method is still valid. These methods are also practical when it is
desired to segment a scene and evaluate a seeker acquisition problem.

The sequence which should be followed to do this simulation is as
follows:

a) Evaluate data collection system.

b) Evaluate seeker transfer functions.
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c) Determine correct range for data collection.

d) Collect and digitize data at the seeker operational wavelength

(Appendix B).

e) Edit data using graphics terminal or plotter outputs.

f) Perform data analysis as follows:

1) Three-dimensional power plots at each point in the
quasi-static simulation.

2) Scene histogram.

3) Statistical analysis, scene mean and deviation, target
mean and deviation.

g) Fourier transform data (two-dimensional).

h) Implement seeker filter functions.

i) Complete simulation.

6. RECOMMENDATIONS

Because the primary purpose of simulations is to evaluate
seekers, it is desirable to understand why a system does or does not
function properly. To make these interpretations, it is necessary to
display to the observer both the data being used by the seeker system
and the data which have been filtered from the scene. To accomplish
this, it is necessary to use a display which has the capability of
storing one entire scene and taking the difference between the original
data and the filtered data. Therefore, if this type display is not
available, it is strongly recommended that one be purchased.
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Appendix B. CLASSIFIER MODEL FOR DISCRIMINANT SYSTEMS

1. INTRODUCTION

Everyone is an expert at target-background discrimination

but virtually nothing is known about it. Perception of the environment

(target/background discrimination) is performed constantly by all living

creatures but little is known about the actual processes involved because

most occur at the subconscious level. The idea behind research in pat-

tern recognition is to model the processes of perception to enable

computer systems to perform interpretation (rather than manipulation) of

sensed data.

2. MODEL OUTLINE

The classifier model is an approach which uses a flexible

combination of heuristic and statistical means to select and/or evaluate

an optimal target/background discrimination system. Extensive reviews

and detailed descriptions of the classifier model and other pattern

recognition systems are available in the literature [I - 81. The

authors will here recap a general outline of the model using examples

and illustrations to allow the reader to become familiar with the

working concepts of pattern recognition as applied to target/background

discrimination. The classifier model consists generally of three differ-

ent parts (Figure B-l).

- W11

FEATURE X CLASSIFIER -w2

SCENE TRANSDUCER EXTRACTOR : -,w
(T) g W, d (x)

=W 2

Figure B-1. The classifier model.

a. Transducer

The transducer essentially defines the observation

set. That is, the transducer senses or measures the external environment

and converts that information into a machine-usable form. In mathemat-

ical terms, the transducer generates p-dimensional observation vector,

Y = (YI' Y2' y3' "' yp ) where the yi can be any observation (amplitude,

phase, frequency, length, etc.)

b. Feature Extractor

The feature extractor acts on the observations to

extract potentially useful information to be used by the classifier.
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This can be represented mathematically by Equation (B-I) which maps

the observation vector, y, into the feature vector, x, through the
transformation, T.

XT() (B- I)

c. Classifier

The classifier is used to partition the feature

space into decision regions and classify each feature vector, x,
corresponding to a set of observations as belonging to a particular
class of objects (wi). This can be thought of as another mapping, this

time from the feature space, X, to the class space, C, which is a
discrete space with each point representing a particular class.

The power of the classifier model is that given a set of observa-
tions, certain knowledge of the sample statistics (either calculated,
measured, or assumel) and a feature extraction procedure, the model can
describe the statistical discriminatory ability of a system. The model
can be used to opti,..Lze the feature extraction process when the features
have not already been determined by the type of transducer. The class-
ifier can be used to evaluate existing systems for performance under
novel conditions.

3. THE CLASSIFIER MODEL

a. Transducer

The design of the transducer is primarily a function
of the particular discrimination problem and the technology available.
There is currently no general theory able to determine which observables
should be chosen, but the choice can be influenced by certain heuristic
insights into the feature extractor. The efficiency of both the feature
extractor and classifier is ultimately determined by the quality of
observations made by the transducer.

For example, examine a two-color IR system. The transducer comprises
the detectors for each of the two-color bands. The detectors sense the
IR radiation in each band and convert it to some form of electrical signal,
i.e., a machine-usable voltage.

b. Feature Extractor

There are three criteria for the optimum performance
of a feature extractor: maximum separability of classes in feature
space, minimum loss of discrimination information, and maximum reduction
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of data volume. Each of these criteria will carry different priorities
according to the problem addressed and the available facilities.

In specifying a two-color system, the feature extraction process
has already been defined in that the amplitudes of the signals from
each detector are the features which will be used in the discrimination
process. In this case, the reduction of data volume has been given
maximum priority.

Consider a typical scene from an observation which would be
analyzed segment by segment. Each segment can contain either background
or target. The output of each detector is a voltage (a ix) proportional

to Ji' the incident intensity on the detector. J. is determined by

Equation (A-?I) of Appendix A.

Four measurements are made - JI and J2 for both target and back-

ground - and recorded for each band in Figure 13-2 and plotted in the
two-dimensional feature space in Figure 11-3.

The measurements map as the two points, (alT, aT) and (a I, a2B )

respectively (Figure B-3), and would correspond to the actual "signatures '

of each class if the intensities in each color band (J,, J2) were

uniquely determined and perfectly measured. In this case, the discrimi-
nation system would be able to say "If feature f(x,y) = (alT, a2T), this

is a target. If f(x,y) = (a n, a2B), this is background." However,

if a large number of readings are taken (training samples), the points
measured will be scattered due to errors in measurements as well as
random variations in such target and background properties as temperature,
emissivity, area, range, atmospheric conditions, illumination and reflec-
tance, etc. If the number of samples with measured amplitude, a, is
plotted versus a, there will be some statistical distribution of the
measurements in each band as shown in Figure B-4 (for the one-dimensional
case shown for JI only).

Thus, the feature space would appear as in Figure B-5 with each
class of objects (target and background) described by a distribution
of points. In order to differentiate between class wI (target) and

class w2 (background) the classifier would use the tunction g(x,y).

Figure B-5 says, "If the feature f(x,y) < g(x,y) this is class Wl.

Thus, the feature space is divided into two decision regions by the
use of the discriminant function, g(x,y) and the decision rule in quotes
which could be denoted as d(x,v,g).
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Figure B3-3. Two-color feature space.
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A few points of Class w2 lie in the decision region for (lass wI

and vice versa; hence the discriminant would make an error when class-
ifying these observations. The probability of such an occurrence is
defined as the probable error, P(error). To determine the probable
error, there must be some knowledge (measured, assumed, estimated, or
theoretically derived) of the sample statistics. That is, how are the
measurements (real or simulated) scattered by the random variations of
the objects and the errors in sensing them?

Much statistical work has been done which indicates that most
natural phenomena may be adequately described by a mean vector with a
normal distribution of points around it. In three-space, a normal
distribution resembles an ellipsoid about the mean (Figure B-6). Thus,

if an ellipsoid were to be described in three-space, the mean, direc-
tion, and length of the semi-minor and major axes need to be calculated.
This may be done in three-space and extended into n-space by the calcu-
lation of the variance of the data from the mean. The variance denoted

by o2 is a measure of the elongation of the data in a particular direc-
tion and may be calculated by standard statistical methods. An intui-
tive feeling for o is found by the following example. In 95% of the
cases considered, a random data value x will fall in the region defined
by i x - p!! 2a where w is the mean value. Figure B-7 shows the region
for one dimension; o may be considered to be a difference in spectral
response in one channel from the mean value. This may be extended to
N channels of data by considering that there is a variance associated
with each channel of data. Because randomly distributed data within
a normal distribution are being used, the values for the mean and the
variance associated with a particular class can only be estimated. In
general, if a large number of samples are considered to calculate the
mean value, the mean will approximate the true mean. If only a small
number is considered, there may be significant error in the calculation
of the mean for a particular class. In multivariate analysis, the
variances in each of the spectral regions are not the only considerations.
If data values in some channels depend on data values in other channels,
there will be a covariance between the two channels of data. For N
channels, this may be represented in an N by N matrix (the covariance
matrix). If there is no interdependence, the channels are said to be
independent and the covariance is zero. The best estimate for the
mean, ., and covariance matrix, i- , is given as follows:

M Xk (B-2)
Mk 1

where X k is the N-dimensional data vector for the kth training sample

and M is total number of training samples,
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Figure 9-6. A three-dimenlsional feature space.
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Sk=

where t indicates that the second matrix is transposed. If a sufficient
number of samples are used to define the preceding population or the
variances are well-defined, the diagonal elements of the covariance

matrix will be the variances squared for each channel and the off-diagonal

elements describe the interreaction between channels of data. A sample

case for three channels is shown as follows:

2

0I 102 °1 3

A

= °2°1 0203 (B-4)

2
31 32 03
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If the channels of data were independent then

2
1 0

A

0 2 0 (B- 5)

2

0 3

Returning to the feature extraction processes, there are two
approaches to optimizing feature extraction: heuristic and statistical.

The heuristic approach tries to extremitize a criterion function,
q, which may not be monotonically related to the probability of error.
Such methods generally fall into two categories: indirect, which
defines a q and tries to optimize it by proper choice of the transfor-
mation T; and direct, in which nonmutual properties of each class
compose the feature space.

An example of an indirect approach is the Fisher mapping
(Figure B-8), which establishes the following criterion function taking
into account both interclass and intraclass separations for any two
classes by maximizing the distance between sample means while also
minimizing the class dispersion.

The criterion function

q(wl, w 2 , T) = T(L I I- 2 ) 2 / T  I + 2) T t  (B-6

is maximized for

T = (GI -
t  + (B-7)

2 I 2

where

" i is the statistical mean and gives a measure of interclass

separation

N i is the number of training samples

i

Sis the covariance matrix and gives a measure of intraclass

separation.
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of data points, has set, principal axes which are the eigenvectors of.'
with lengths given by the corresponding eigenvalues. The observation
space is transformed so that its principal axes (iik) are aligned with
those of the covariance matrix. The transformed vectors -k are arranged

in descending order of their corresponding eigenvalues. If there are
originally N dimensions which are to be reduced to n - N dimensions, the
mean square error due to the reduction is minimized by taking the first
n vectors beginning with the vector with the largest eigenvalue.

An example of the K-L transformation is the subspace method
described by Watanabe et al. in which each class is characterized by
aligning the axes of the observation space matrix with the axes of the
covariance matrix. The representation of the class is given by the
axes with the largest components in the transformed space. The feature
space (shaded area of Figure B-9) is then taken as the union of the
class subspaces minus their intersection(s).

w-w

Figure B-9. Subspace method for feature selection.

The statistical approach tries to maximize the separation of classes
in feature space. Two "measures" of interclass separation are Jeffrey's
Divergence,

D f (p(ylwl) - p~yw)£n ) dy (B-8)
y p(yw 2) PYW)
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which is useful for Gaussian distributions as D is the directly related

to P(error), and the Bhattacharyya Distance,

B = ny [P(yIw) p(yIw 2)] 
1 /2 dy

which bounds the probability of error by the equation

P(error) ! /!P(wI)P(w2) exp (-B) (S-lO)

The notation for different kinds of probabilities are categorized as
follows:

P(x) = probability mass function for discrete random variable x

b
where P(a.- x < b) =a f p(x) dx, defines the probability that x has a

value between a and b, where p(x) = probability density function for
continuous random variables. P(x, y) is the joint probability distri-
bution which is the probability of an event with values x and y.
P(xly) is the conditional probability density, the probability of an
event having value x, given that y is true.

c. Classifier

Once the feature transformation has been selected,
the classifier is employed to partition the feature space into decision
regions (Figure B-7). Each region is determined by the decision function
(alternately called the discriminant function) which can be optimized
according to a host of different criteria. For the purposes of target-
background discrimination, the most intuitively satisfying measure of
classifier performance is determination of expected loss or risk.

The expected loss can be minimized using the Bayes' criterion for
the decision rule, d(x) (Figure B-1O):

d(x) =x is in wI if g(x) = (b1) p(xiw)P (W) (b2) p(xlw2)P(w 2 ) > 0

x is in w2 otherwise.

(B-11)

where

bI = -1 ll, b2 = 12 - K22

75



the loss associated with classifying x as being in w. when
Lj the true state is w..

p

p Ix/w2) P(W 2)"

/ XW)P(I

Ji/

Figure B-10. Bivariate distribution in feature space.

The basis of the Bayes' criterion is that the a posteriori proba-

bilities P(wiIx) can be calculated from the a priori probabilities P(wi)

and class-conditional probability densities p(xlwi). The philosophy of

Bayesian classification is that these a priori probabilities can be

calculated, approximated, assumed, or measured from a set of "training
samples" and that this information, although not rigorously supported,
is still useful and should be incorporated in the classification process.

Because the normal density function is very often used to represent
reality, the discriminant function for it has been known for some time.

The discriminant function for a radiance vector X to be in the class wi is
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gi (X) = -1/2 (X _ ) ii (X - 2) log 2j,

(B-12)

-1/2 log .1 + log P(wi)

-1 th
where is the mean vector and is the inverse of the i class

d
covariance matrix. In general, the d log 2:. term is only additive and

is not a function of which class is considered. Thus it may be ignored.

By replacing g (x) by f(gi(X)) where f is a monotonically increasing

function, the resulting classification is unchanged. Thus, if the

exponential of gi(X) is taken, a new discriminant function is found:

-1/2(X -
t  X

Qi = f(gi (X) = e 1/2 (B-13)Ii I

Now for every radiance vector X, a Q is calculated for each class previ-
ously defined. The vector is then assigned to the class that has the
largest value of the discriminant function Q. This proceeds until all
the radiance vectors for the imaged area are processed. One pitfall
of this method is that a vector is always assigned to one of the classes
even though it actually may not be similar to any of the classes.

Because the I and the i need only be calculated once for

each class, the most time-consuming part of the calculation for each
-- -t-C

data vector is the quadratic computation of (X - 4)t ' - (X -

Thus this method uses statistics generated by a large number of
samples to describe each class of data to which a vector may be assigned.
The discriminant function must be calculated for each class for every
data vector which is then assigned to one of those classes by inspection
of the discriminant functions.

The Bayes' criterion therefore requires some knowledge of the

a priori probabilities P(wi) corresponding to the probabilities of

occurrence of each Class w i . The Neyman-Pearson criterion avoids this

reqtirement (but pays the price with additional analytical complexity)
by minimizing the risk of Class w2 while keeping the risk of Class w1
constant.
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For a zero-one loss function (that is, any error has a weight one
and any correct decision has zero penalty), the criterion function is
minimized

q(d) = P(errorlw 2 ) (B-14)

while P(errorl wI) 5 Co

which is minimized for the decision rule,

wI if p(xlw 1 )/P(XIW 2) > ;,
d(x) = (B- 15)

w2 otherwise

where 4 is found by

C = f p(dcw I ) d£ (B-16)

4

and p(lwl) is the class conditional probability density of the likeli-

hood ratio

i = p(x1wl/P(XIW2 ) (B-17)

Nearly all classification methods require some knowledge about the
statistics of the intended discriminant classes. Unless an analytic
model for all the classes can be constructed, these statistics must be
inferred from a set of "training samples."

The sample statistics can be approximated using parametric methods
to fit sample measurements to some assumed distribution (such as a
Gausian or normal distribution) which is then used as the analytic
distribution. Nonparametric methods use known relations in the data
to construct density estimates which hopefully converge to the true
probability densities. Examples of such methods are Parzen-type and
k-th nearest neighbor estimates.

Once the statistical properties for the problem at hand have been
determined, the classifier is evaluated for probability of error during
performance. Two courses of action are available for the design of the
classifier as follows:
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1) The training samples employed for the classifier design are
used for the evaluation of the classifier. This generally results in
an optimistic (best-case) estimate of classifier performance.

2) An evaluation set of samples which are different from the
training set are used. This gives a pessimistic (worst-case)
evaluation of the classifier.
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